Bremen

Y

;%
VR =%

Advanced Computer Graphics
Advanced Shader Programming

G. Zachmann

University of Bremen, Germany
cgvr.cs.uni-bremen.de

eeeee

= Programmable vertex und fragment processors

= Expose that which was already there anyway

= Texture memory = now general storage for any data

glBegin (GL_..)

Status

glEnable, glLight, .. Memo
5
B © ¢ . Fragment
é = & Project _fagi
=
o
)
! :ex;ure l
I Pixel Read Back
» Pack &
glTexImage < | Control

G. Zachmann Advanced Computer Graphics SS }June 2014 Advanced Shader Techniques

b

Ae|dsiq

eeeee

Y A More Abstract Overview of the Programmable Pipeline
Vertices in Vertices in
Model Cford’ Camerei Coord.
[
Vertex ¢ Primitive
glvVertex () . — —
Shader o Assembly

ﬁ Connectivity ﬂ
glBegin(GL ..), glColor, .. <«

| > /
glLight, glRotate, .. OpenGL State c(/ Primitives

-t
-.-j _ “ o
New Fragments Fragment PPess F1 <=3 |Rasterization
Shader J
ﬂ Fragments

Fragment/Framebuffer

=) Framebuffer
Tests & Operations

G. Zachmann Advanced Computer Graphics SS }June 2014 Advanced Shader Techniques

<N
60

b

Bremen

J

W More Versatile Texturing by Shader Programming "«

e

= Declare texture in the shader (vertex or fragment):

uniform sampler2D myTex;

" Load and bind texture in OpenGL program as usual:

glBindTexture (GL TEXTURE 2D, myTexture);
glTexImage2D(...) ;

Establish a connection between the two:

uint mytex = glGetUniformLocation(prog, "myTex"),

glUniformli(mytex, 0); // 0 = texture unit, not ID

= Access in fragment shader:

vec4d c = texture2D(myTex, gl TexCoord[0].xy)

G. Zachmann Advanced Computer Graphics SS }June 2014 Advanced Shader Techniques 4

eeeeee

Y

Example: A Simple "Gloss" Texture Bl

" |dea: expand the conventional Phong lighting by introducing a
specular reflection coefficient that is mapped from a texture on the
surface

Iowt = (rgcos @ + r, cos? ©)- I,

re = rs(u, v)

demos/shader/vorlesung demos/gloss. {frag,vert}

G. Zachmann Advanced Computer Graphics SS }June 2014 Advanced Shader Techniques 5

eeeee

= Goal:
Brick texture

BrickPercent.x
1 1
1 y : |

_______ T ™
| |
| |

| ————> |
BrickStepSize.x

= Simplification &

parameters:

G. Zachmann Advanced Computer Graphics SS }June 2014 Advanced Shader Techniques 6

eeeee

" General mechanics:

= Vertex shader: normal lighting calculation

= Fragment shader:

- For each fragment, determine if the point lies in the brick or in the mortar on the
basis of the x/y coordinates of the corresponding point in the object’s space

- After that, multiply the corresponding color with intensity from lighting model

= First three steps towards a complete shader program:

demos/shader/vorlesung_demos/brick.vert and brick[1-3].frag

G. Zachmann Advanced Computer Graphics SS }June 2014 Advanced Shader Techniques

Noise

" Most procedural textures look too "clean"
= |dea: add all sorts of noise
= Dirt, grime, random irregularities, etc., for a more realistic appearance

"= |deal qualities of a noise function:

= At least C2-continuous

It’s sufficient if it looks random

No obvious patterns or repetitions

Repeatable (same output with the same input)

Convenient domain, e.g. [-1,1]
= Can be defined for 1-4 dimensions

= |sotropic (invariant under rotation)

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

" CG ¥
VR

]

eeeee

"= Why we don't just use a noise texture:

Sphere rendered with a 3D Sphere rendered with
texture to provide the noise. procedural noise.
Notice the artifacts from
linear interpolation.

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques 9

= Simple idea, demonstrated by a 1-dimensional example:

1. Choose random y-values from [-1,1] at the integer positions:

2. Interpolate in between, e.g. cubically (linearly isn’t sufficient):

'} ——

o\:[}\}‘.‘?}}}“"
\/\/\//'\'/L

= This kind of noise function is called value noise

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

L

L CG 5

VR =

10

eeeee

3. Generate multiple noise functions with different frequencies:

frequency =4
amplitude = 1.0

frequency =8
amplitude = 0.5

frequency = 16
amplitude = 0.25

frequency =32
amplitude = 0.125

frequency = 64
amplitude = 0.0625

N
NN SN

4. Add all of these together

- Produces noise at different "scales"

G. Zachmann

Advanced Computer Graphics SS

} June 2014

sum of 2 octaves

sum of 3 octaves

sum of 4 octaves

sum of 5 octaves

Advanced Shader Techniques

<N

11

0

b

eeeee

= Persistence = "how much amplitude is scaled for successive
octaves scaled for successive octaves"

perlin(x) = Zp"n,-(2i<<) ,x €10,1],p €0, 1]

Scaling along x for octaves

Persistence
= Example:
Frequency 1 2 4 8 16 52
Persistence = 1/4 L~ \EB————_ P 98 W + =~
Amplitude: 1 1/4 1 or 1 /% 1/256 1 e result
Persistence = 1/2 L~ N e o~ R TR e
Amplitude: 1 1/2 1/4 1/8 1/16 1/32 result
Persistence = 1/ root2 — ' 4+ PR ATN) " of e - e =
T e : 1/1.414 1/2 1/2.828 1/4 1/5.656 et
Persistence = 1 L~ \ B . Gl _' [P~ . WAEE + ﬁ,” "1“(Mb\' =M " M
Amplitude: 1 1 1 1 1 1 result

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

. CG

]

-

VR

12

eeeee

" The same thing in 2D:

Result

= Easily allows itself to be generalized
into higher dimensions

= Also called pink noise, or fractal noise

= Ken Perlin first dealt with this during
his work on TRON

G. Zachmann Advanced Computer Graphics SS }June 2014

Advanced Shader Techniques

¥ oo

e

VR:E

13

eeeeee

U Gradient Noise

= Specify the gradients (instead of values) at integer points:

AN
0 123 4V 5

"= |[nterpolation to obtain values:

= At position x, calculate yq and yq as values

of the lines through x=0 and x=1 with

the previously specified (random) gradients

= Interpolate yy and y; with a sinusoidal blending A
function, e.q. o p

h(x) = 3x* — 2x° :

o ;

g(x) = 6x> — 15x* 4 10x° o

3y

0 s
0 01 02 03 04 05 06 07 08 09 1

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques 15

eeeee

= Advantage of the quintic blending function: ¢”(0) = ¢"(1)
— the entire noise function is C2-continuous

= Example where one can easily see this:

uljdad uay|

Cubic interpolation Quintic interpolation

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

7. ca

VR

16

]

=

eeeeee

= Gradient noise in 2D:

= Set gradients at integer grid points

- Gradient = 2D vector, not necessarily with length 1
= |Interpolation (as in 1D):

- W.l.o.g., P=(x,y) € [0,1]x[0,1]

]

f.
AT R

- Let the following be the gradients:
goo = gradient at (0,0), gpq1 = gradient at (0,1),
g10 = 9gradient at (1,0), g1 =gradientat (1,1)

- Calculate the values zj; of the "gradient ramps" gj;

at point P :

G. Zachmann

n=s0 ()
00 00 y

I X
01 = 801 y—1

Advanced Computer Graphics

)

20— g .(X—l)
10 10 y

SS }June 2014 Advanced Shader Techniques 17

eeeeee

- Blending of 4 z-values through bilinear interpolation:
zo = (1 = q(x))z00 + q(x)z10 za = (1 — q(x))zo1 + q(x)z11

Zyy = (1= q(y))z«0 + q(y)za

= Analogous in 3D: R)
= Specify gradients on a 3D grid ’ o
= Evaluate 23 = 8 gradient ramps
= Interpolate these with tri-linear interpolation o ’m. i ®
and the blending function Total LERPS :4+ .1
=7

= And in d-dim. space? — complexity is O(Zd) !

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

e

L CG 5

VR =

18

eeeeee

W Simplex Noise 5. 1

VR =

e

" d-dimensionaler simplex :=
combination of d+1 affinely independent points

= Examples:

= 1D simplex = line, 2D simplex = triangle, © °©
3D simplex = tetrahedron
" |n general:
= Points Py, ..., Py are given
= d-dim. simplex = all points X with
d Ps
X =P+ Z S;u;
with d 2
P
UiZPi—Po,SiZO,Iz:;Siﬁl 0 S

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques 19

" |n general, the following is true:
= A d-dimensional simplex has d+1 vertices

= With equilateral d-dimensional simplices, one can partition a cube that
was suitably "compressed" along its diagonals

- Such a "compressed" d-dimensional cube contains d! many simplices

= Consequence: with equilateral d-dimensional simplexes, one can
partition d-dimensional space (tessellation)

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

' CG &
VR X

20

e

=

= Construction of the noise function over a simplex tessellation
(hence "simplex noise"):

1. Determine the simplex in which a point P lies

2. Determine all of its corners and the gradients in the corners

3. Determine (as before) the value of these "gradient ramps" in P
4. Generate a weighted sum of these values

= Choose weighting functions so that the “influence” of a simplex grid
point only extends to its incident simplexes

/\q‘m‘f\
Y‘!‘:’:‘:‘;
!‘\/‘V‘\/A

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

e

L CG 5

VR =

21

eeeee

= A huge advantage: has only complexity O(d)

= For details see "Simplex noise demystified" (on the course's
homepage)

= Comparison between classical value noise and simplex noise:

classical

simplex

3D 4D

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques 22

eeeeee

= Four noise functions are defined in the GLSL standard:
float noisel (gentype), vec2 noise2 (gentype),

vec3 noise3(gentype), vecd noised (gentype).

= Calling such a noise function:
v=noise2(f*x +t, fy +t)

= With f, one can control the spatial frequency,
With t, one can generate an animation (t="time").

= Analogous for 1D and 3D noise
= Caution: range s [-1,+1]!
= Cons:

= Are not implemented everywhere

= Are sloooooooow...

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

7. cc
VR 2

23

D

Y Example: Application of Noise to our Procedural Texture

= QOur procedural brick texture (please ignore the uneven outer torus

contour, that's an artifact from Powerpoint):

The code for this example
is on the course's
homepage (after
unpacking the archive,
itis in directory
vorlesung_demos

files brick.vert and
brick[4-7].frag)

With black spots With curvy brick edges

G. Zachmann Advanced Computer Graphics SS }June 2014 Advanced Shader Techniques

24

eeeee

Ken Perlin's famous solid
texture marble vase, 1985

G. Zachmann Advanced Computer Graphics

SS

Procedural bump mapping, done by computing noise
in the pixel shader and using that for perturbing the
surface normal

} June 2014 Advanced Shader Techniques

25

b

eeeee

G. Zachmann

g =a * perlin(x,y,z)
grain = g - int(qg)

Advanced Computer Graphics SS }June 2014

Advanced Shader Techniques

‘;.-‘ P ““..'

<N

60

26

b

WY Remark on Implementation

= Goal: repeatable noise function
= That is, f(x) always returns the same value for the same x
= Choose fixed gradients at the grid points

= Observation: a few different ones are sufficient

= E.g. for 3D, gradients from this set are sufficient:

ya g = (0,1,1),g =(0,1,-1),
g =(0,-1,1), g3 = (0,-1,-1),
g4 = (1,0,1), g5 = (1,0,-1),
g = (-1,0,1), g, = (-1,0,-1),
X gs = (1,1,0), g = (1,-1,0),
g0 = (-1,1,0), g, = (-1,-1,0)

= |nteger coordinates of the grid points can be simply hashed—
index into a table of pre-defined gradients

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

e

3

27

eeeeee

Light Refraction

= With shaders, one can implement
approximations of simple global effects

= Example: light refraction

= What does one need to calculate the refracted
ray?
= Snell's Law: N1 sinf1 = nysin 65
= Needed: n, d, nq, ny
= Everything is available in the fragment shader
= SO, one can calculate t per pixel
= So why is rendering transparent objs difficult?

= |n order to calculate the correct intersection

point of the refracted ray, one needs the entire
geometry!

G. Zachmann Advanced Computer Graphics SS }June 2014

Advanced Shader Techniques

28

eeeeee

= Goal: approximate transparent object with
two planes, which the incoming & refracted
rays intersect

= Step 1: determine the next intersection point
P, = P; + dt
= |dea: approximate d

= To do that, render a depth map of the back-
facing polygons in a previous pass, from the
viewpoint

= Use binary search to find a good approximation
of the depth (ca. 5 iterations suffice)

G. Zachmann Advanced Computer Graphics SS }June 2014

~—

>
o N
-2
> . >

Advanced Shader Techniques

>
“

[a)
0

29

b

= On the binary search for finding the

depth between Py and P;:

G. Zachmann

Situation: given a ray t, with t, < 0, and
two "bracket" points A(® and B©),
between which the intersection point

must be; and a precomputed depth map
Compute midpoint M(®)

Project midpoint with projection matrix

Pl

Use (M2, MP™) to index the depth map

~

—d
if d> M = set A = MO
If d < MP = set BE) = m(©

Advanced Computer Graphics SS }June 2014

t

g

A

A©) Viewpoint
(€]

A

Advanced Shader Techniques

\.d
b

f.

e

¥ cc =

VR =

30

eeeee

= Step 2: determine the normal in P»

= To do that, render a normal map of all
back-facing polygons from the viewpoint
(yet another pass before the actual
rendering)

= Project P, with respect to the viewpoint
into screen space

= |ndex the normal map
= Step 3:
= Determine t)

= Index an environment map

G. Zachmann Advanced Computer Graphics SS }June 2014

Normal map

Advanced Shader Techniques

31

eeeee

= Many open challenges:

= When depth complexity > 2:
- Which normal/which depth value should be stored in the depth/normal maps?
= Approximation of distance

= Aliasing

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

. CG

]

-

VR

32

Bremen

Y

Examples

Our Method

G. Zachmann

Ray Traced

Advanced Computer Graphics

SS

} June 2014

With internal reflection

Advanced Shader Techniques

33

eeeeee

W The Geometry Shader

= Situated between vertex shader and
rasterizer

= Essential difference to other shaders:

= Per-primitive processing

= The geometry shader can produce
variable-length output!

= 1 primitive in, k prims out

= |s optional (not necessarily present on
all GPUs)

= Note on the side: features stream out

= New, fixed-function

= Divert primitive data to buffers

= Can be transferred back to the OpenGL
prog ("Transform Feedback")

G. Zachmann

Advanced Computer Graphics

SS

} June 2014

)
ool

o B
e &

Inout Vertex
P Buffer
Assembler
Index
Buffer
Texture
Geometry
[Shader %ﬁ Texture
S Buffer
Setup/ Memory
Rasterization
Texture

Advanced Shader Techniques 34

eeeee

(errZ) o

(X',y’,z'iu
@ A %é\ 0
Jimm iy
atribute—> | S | —> RO —> | PG| —>[BUffer Op | —
Shader Shader

varying varying

uniform
(x,y,2) i i i %
@ %é\ 0
AEHR
attribute—> | Vertex P, fragment]
Shader Shader

varying in varying out

uniform

G. Zachmann Advanced Computer Graphics SS }June 2014 Advanced Shader Techniques 35

eeeee

" The geometry shader's principle
function:
= In general "amplify geometry"

= More precisely: can create or destroy
primitives on the GPU

= Entire primitive as input (optionally with
adjacency)

= Outputs zero or more primitives

- 1024 scalars out max

= Example application:

= Silhouette extrusion for shadow volumes

G. Zachmann Advanced Computer Graphics SS }June 2014

Advanced Shader Techniques

36

. CG

L

-

VR

= Another feature of geometry shaders: can render the same
geometry to multiple targets

= E.g., render to cube map in a single pass:

= Treat cube map as 6-element array '
GS

= Emit primitive multiple times

Render Target A
Array ~

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques 37

Y

Some More Technical Details

" |nput / output: —~

Points, Lines, Line Strip, Line Loop, Lines

Application with Adjacency, Line Strip with Adjacency,
generates these < Triangles, Triangle Strip, Triangle Fan,
primitives Triangles with Adjacency,
Triangle Strip with Adjacency
~
/‘
Driver feeds these Point, Line, Line with Adjacency,

one-at-a-time <<
into the Geometry Shader

Triangle, Triangle with Adjacency

N~
A 4
Geometry Shader
v
Geometry Shader Points, Line Strips,

generates (almost) as

many of these as it wants Triangle Strips

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

. CG

L

-

VR

38

eeeeee

" |n general, you must specify the type of the primitives that will be
input and output to and from the geometry shader

= These need not necessarily be the same type

* Input type:

glProgramParameteri (shader prog name,
GL_GEOMETRY INPUT TYPE, int value);

= value = primitive type that this geometry shader will be receiving

= Possible values: GL_POINTS, GL_TRIANGLES, ... (more later)
= Qutput type:

glProgramParameteri (shader prog name,
GL_GEOMETRY OUTPUT TYPE, int value);

= value = primitive type that this geometry shader will output

= Possible values: GL_POINTS, GL_LINE_STRIP, GL_TRIANGLES_STRIP

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

7. ca
VR

39

b

Y

Data Flow of the Principle Varying Variables

If a Vertex Shader then the Geometry Shader and will write them to the

writes variables as: will read them as:

gl_Position —— > gl_PositionIn[lg] ——— gl_Position

Fragment Shader as:

gl_TexCoord[m] ————— gl_TexCoordIn[lg] —— > gl_TexCoord[m]

gl_FrontColor ——— gl_FrontColorin[s] ———— gl_FrontColor
gl_BackColor ——— gl_BackColorin[ll] —— > gl_BackColor
gl_PointSize — > gl_PointSizeln[g] — = gl_PointSize
gl_Layer — > gl_Layerin[m] —— > gl_Layer

"varying" "varying in" "varying out"

B gl_Verticesin

G. Zachmann Advanced Computer Graphics SS }June 2014

Advanced Shader Techniques

. CG

]

-

VR

40

eeeee

]

= |f a geometry shader is part of the shader program, then passing
information from the vertex shader to the fragment shader can

only happen via the geometry shader:

Vertex Shader

Geom Shader

Fragment Sh.

Already declared for you

varying vec4 gl_Position;
varying vec4 VColor;
VColor = gl_Color;

varying in vec4 gl_Position[3];
varying in vec4 VColor[3];

varying out vec4 gl_Position;
varying out vec4 FColor;

varying vec4 FColor;

G. Zachmann Advanced Computer Graphics SS }June 2014

@
7. ca
S TVR =
Vertex shader code
Primitive Assembly] 3
gl Position = gl Position[O0];
FColor = VColor[0]:
Emitvertex () ;
Rasterizer] 3
Fragment shader code
Advanced Shader Techniques 41

eeeeee

= Since you may not emit an unbounded number of points from a
geometry shader, you are required to let OpenGL know the
maximum number of points any instance of the shader will emit

= Set this parameter after creating the program, but before linking:

glProgramParameteri(shader prog name,
GL GEOMETRY VERTICES OUT, int n);

= A few things you might trip over, when you try to write your first
geometry shader:

= |t is an error to attach a geometry shader to a program without
attaching a vertex shader

= Itis an error to use a geometry shader without specifying
GL_GEOMETRY_VERTICES_OUT

= The shader will not compile correctly without the #version and
#extension pragmas

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

. CG

L

-

VR

42

eeeeee

" The geometry shader generates geometry by repeatedly calling
EmitVertex () and EndPrimitive ()

= Note: there is no BeginPrimitive() routine. It is implied by

= the start of the Geometry Shader, or

= returning from the EndPrimitive () call

G. Zachmann Advanced Computer Graphics SS }June 2014

Advanced Shader Techniques

43

b

-

Bremen

Y

A Very Simple Geometry Shader Program

#version 120

#extension GL EXT geometry shader4

main (void)

{
gl Position = gl PositionIn[0] +
gl FrontColor = vec4(1.0, 0.0, O
EmitVertex () ;
gl Position = gl PositionIn[0] +
gl FrontColor = vec4(0.0, 1.0, O
EmitVertex () ;
gl Position = gl PositionIn[O0]
gl FrontColor = vec4(0.0, 0.0, 1
EmitVertex () ;
EndPrimitive () ;

}

enable void

vecd4 (0.0, O

.0, 1.0);

vecd (0.04, -

.0, 1.0);

+ vecd (-0.04,
.0, 1.0);

.04,

0.0, 0.0);

0.04, 0.0, 0.0);

-0.04, 0.0,

0.0);

G. Zachmann Advanced Computer Graphics

SS } June 2014

Advanced Shader Techniques

44

Bremen

U Examples

4\“1»;' .
<
=0

= Shrinking triangles:

G. Zachmann Advanced Computer Graphics SS tJjune 2014 Advanced Shader Techniques 45

L
o

Bremen

Y

Displacement Mapping

= Geometry shader extrudes
prism at each face

= Fragment shader ray-casts
against height field

= Shade or discard pixel
depending on ray test

i W(

y

G. Zachmann Advanced Computer Graphics SS }June 2014

Advanced Shader Techniques

B

-

4\?‘
<N

47

0

b

eeeeee

Y

Intermezzo: Adjacency Information

= |n addition to the conventional primitives (GL_TRIANGLE et al.), a
few new primitives were introduced with geometry shaders

* The most frequent one: GL_TRIANGLES_WITH_ADJACENCY

Triangles with Adjacency

6N vertices are given

(where N is the number of triangles to draw).
Points O, 2, and 4 define the triangle.

Points 1,3, and 5 tell where adjacent triangles are.

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques 48

e

Y

Shells & Fins 4

= Suppose, we want to generate a
"fluffy", ghostly character like
this

" |dea:
= Render several shells (offset

surfaces) around the original
polygonal geometry

- Can be done easily using the vertex
shader

= Put different textures on each shell

the generate a volumetric,

yet "gaseous" shell
appearance

G. Zachmann Advanced Computer Graphics SS }June 2014 Advanced Shader Techniques 49

b

]

"VR =

=" Problem at the silhouettes:

= Solution: add "fins" at the
silhouette
= Fin = polygon standing on
the edge between 2
silhouette polygons

= Makes problem much less 8 shells
noticeable +

fins

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques 50

eeeee

= |dea: fins can be generated in the
geometry shader

= How it works:

= All geometry goes through the
geometry shader

= Geometry shader checks whether or
not the polygon has a silhouette
edge:

silhouette < en; >0 AN en, <0 or en; <0 A en, >0

where e = eye vector

= |f one edge = silhouette, then the
geometry shader emits a fin polygon,
and the input polygon

= Else, it just emits the input polygon

G. Zachmann Advanced Computer Graphics SS }June 2014

Advanced Shader Techniques

A
#. ca
VR X

51

]

Bremen

U Demo

® O O
| GLSL Exhibits
Cloud 1
Cloud 2
Earth
EnvMap
Eroded
Fire
For
Glass
Gooch
Granite
Inferno
Marble
Plasma
Toon
Toyball
Vertex Noise
Wobble
Wood 1
Wood 2
Wood Shader

GLSLShowpiece Lite

Shell-based fur.

A simple way to implement fur is to draw many shells of an object. The shells are made up of vertices slid along the normals of
the object. Each shell's transparency is modulated with a noise texture on a per-fragment basis to approximate a random
distribution of fur.

The vertex shader in this exhibit slides the vertices of the object along its normals, and computes lighting.

The fragment shader samples a color texture for the color of the surface and then uses a noise texture to modulate the alpha of
fragments.

demos/shader/GLSLShowpieceLite/

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

Mo, they understand me.

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

L

3

Texture for color Texture for angle Noise texture for
of fur hairs length of fur hairs

Furthermore,
one should

try to render
self-shadowing
of strands of fur
hairs ...

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques 54

eeeee

= Typically, what you as a programmer need to do is to write the
shader and expose the parameters via a GUI to the artists, so that
they can determine the best look

Ve
LISTPLANEL DirectX 10 Features
DX10 Fur Shader

sm_wmcisTess a3
S 3
2 W F:
" - = 1
= == - ——— Py d
F
-

SBETasuS commivIOD

G. Zachmann Advanced Computer Graphics SS }June 2014 Advanced Shader Techniques

e

;f' =
afi3:

56

Y

Silhouette Rendering

= Goal:

G. Zachmann

Advanced Computer Graphics

SS

} June 2014

Advanced Shader Techniques

7‘,'.. cG
VR "

57

D

eeeeee

= Technique: 2-pass rendering

1. Pass: render geometry regularly

2. Pass: switch on geometry shader for silhouette rendering

Switch to green color for all geometry (no lighting)

Render geometry again

Input of geometry shader = triangles

Output = lines

Geometry shader checks, whether triangle contains silhouette edge
If yes — output line

If no — output no geometry

= Geometry shader input = GL_TRIANGLE_WITH_ADJACENCY
output = GL_LINE_STRIP

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques 58

Bremen

Y More Applications of Geometry Shaders

= Hedgehog Plots:

" cc ::E
VR

G. Zachmann Advanced Computer Graphics SS } June 2014

Advanced Shader Techniques

60

Bremen

W Shader Trees

G. Zachmann Advanced Computer Graphics

SS

} June 2014

Advanced Shader Techniques

)

<N

60

64

P

Bremen

W Concluding Demos

® O O
Exhibit
Plasma

Fur
RayTracer
Life

Brick Shader
Toyball
Bumpmap
Earth
Wobble
Cloud1
Cloud2

Fire

Marble
Cranite
Eroded
Wood1
Wood2
Wood Shader
EnvMap
Glass
HeatHaze
Mandelbrot
Julia
ParticleSimple
ParticleFountain
ParticleWave
VertexNoise
Skinning
SphereMorph
TorusMorph
Lattice
Polkadot3D
Toon

Gooch

OpenGL Shading Language Showpiece

This is the Inferno shader outlined in the Orange Book.

demos/shader/GLSLShowpiece/GLSLShowpiece.app
— Inferno, Granite, Eroded, Glass, HeatHaze, Julia, ParticleFountain, VertexNoise, TorusMorph

G. Zachmann Advanced Computer Graphics SS }une 2014 Advanced Shader Techniques

‘:*‘. .

" CG ¥
VR

65

]

eeeeee

W Resources on Shaders bge

B
«
e

" Real-Time Rendering; 3™ edition | Real-Time

Rendering
Third Edition

el
seupen

-

2
B
0
B
-
3
o

i3 Bulepuay«

= The tutorial on the course home page

= OpenGL Shading Language Reference:

http://www.opengl.org/documentation/qglsl/ @GL

= On the geometry shader in particular:
www.opengl.org/registry/specs/ARB/geometry shader4.txt

G. Zachmann Advanced Computer Graphics SS }June 2014 Advanced Shader Techniques 66

Bremen

W The Future of GPUs?

Input Data

Frame Buffer

Pre 1996
Customized
Software
Rendering

Input Data

Transformation

Primitive Setup

Rasterization

| Pixel/Fragment
- Processing

Frame Buffer
Blend

Frame Buffer

Pre 2001

G. Zachmann Advanced Computer Graphics

Input Data

Frame Buffer
Blend

Frame Buffer

DX10

} June 2014

Advanced Shader Techniques

L

L CG 5

VR =

68

eeeee

Input Data

Frame Buffer

Pre 1996
Customized
Software
Rendering

G. Zachmann Advanced Computer Graphics SS }June 2014

Input Data Input Data Input Data

Primitive Setup

Rasterization

Pixel/Fragment
Processing

Frame Buffer
Blend Frame Buffer
‘ Blend

Frame Buffer Frame Buffer Frame Buffer

Pre 2001 DX10 " No fixed
function?

Advanced Shader Techniques

MR e

69

eeeee

Input Data

Frame Buffer

Pre 1996
Customized
Software
Rendering

Input Data Input Data

Tran#formation
and Lighting

Primitive Setup

| Rasterization

Pixel/Fragment
Processing

Frame Buffer
Blend Frame Buffer
Blend

Frame Buffer Frame Buffer

Pre 2001 DX10

G. Zachmann Advanced Computer Graphics SS }June 2014

Input Data

Input Data

Frame Buffer

Software
Rendering?

Frame Buffer

) No fixed
function?

Advanced Shader Techniques 70

Bremen

Y

G. Zachmann

Advanced Computer Graphics

SS

| June 2014

Advanced Shader Techniques

.

VR

71

